

Application of RAS Technology in Hatchery Production

Spearheading Marine Aquaculture in the Tropics

Outline

- 1. Background
- 2. Flow-through Systems
- 3. Adoption of RAS Technology
 - Dynamic Salinity
 - Mass Balance Analysis
 - Microbial Control Strategy
- 4. Summary

- 4 of top 10 food fish producers in the world are in South East Asia
- Contributed **15.8%** of global fish culture production
- **31 billion** of fish frys required, more expected in future

Are we able to produce enough fish fry sustainably to meet future demand?

Top 10 Food Fish Aquaculture Producers (2014)

Rank	Country	Total (mil tonnes)	% of global share
1	China	27.22	54.6%
2	India	4.48	9.0%
3	Indonesia	3.64	7.3%
4	Vietnam	2.69	5.4%
5	Bangladesh	1.83	3.7%
6	Norway	1.33	2.7%
7	Egypt	1.13	2.3%
8	Chile	0.97	1.9%
9	Myanmar	0.90	1.8%
10	Philippines	0.67	1.3%

Source: SOFIA, 2016

Prevalent Hatchery Method In South East Asia – Outdoor Ponds (aka Mesocosm System) *Flow-thru' System*

Advantages

- Natural Food Chain
- Low density production
- \rightarrow Low Operating Cost
- \rightarrow Ease of Management

Limitations

- Open environment
- Minimal water treatment
- \rightarrow Large fluctuations in water quality
- \rightarrow Risk of entry of pathogens

Flow-thru' System

Common Hatchery Method In South East Asia -Indoor Tanks

- Mainly for high-value species like groupers
- Production **cost is higher** compared to outdoor pond production
- Better disease control and more intensive production
- **Control** over the physical parameters like lightings and temperature
- Better water treatment processes

Our Asian Seabass Hatchery Experience in the Marine Aquaculture Centre (MAC)

- Utilised indoor tank (flow-through) system
- Survival rates @ post-weaning: $10-20\% \rightarrow 40-50\%$
- Key to our success is the **early weaning** to reduce cannibalism rate

Weaning tanks

Larval Development and Feeding Regime of Asian Seabass (Lates calcarifer)

During weaning, water quality is maintained through:

- i) increasing water flow,
- ii) reducing density %
- iii) use of purpose-built weaning tanks (for ease of operation)

General feeding regime for Seabass Larviculture

Day	Algae (mil/ml)	Rotifers (ind/ml)	Artemia (ind/ml)	Artificial feed (g)	Water X-change (%/hr)				
0-1	0.2	0			-				
2-4	0.2	2-5			Trickling				
5-6	0.2	5-8			3-5%				
6-12	0.2	10-15			5-10%				
12-14		15	0.5-1	Sprinkle (2hourly)	10-20%				
15-20			0.5	Sprinkle (hourly)	20-50%				
21-27				8-10% B.W	50%				
28-35			-	8-10% B.W	50%				
Transfer to Early Nursery									

Water quality management is simply increasing water flow rate to maintain the desired levels

Removal of fish wastes & uneaten feeds from the culture tank:

- Toxic ammonia (NH_3/NH_4) <0.5ppm TAN
- Suspended solids (SS) linked to gill cover deformity
- P High bacteria load → disease outbreak

Does higher water exchange (flushing) help to reduce the **bacteria load** in tank?

Opportunistic (r-selective) bacteria like *Vibrio spp.* can overwhelm the culture system very quickly when there are excess nutrients in water!

Disease outbreak! – Big Belly Disease

- With intensifications, productions were severely affected by a **novel disease** called Big-Belly syndrome.
- Pathogen is a intracellular bacteria and very similar to Vibrio spp.

* Disease first described by Intervet/MSD

Big Belly Syndrome*

Size of fish affected:

- Fry (18-30 days) to 20g <u>Clinical signs:</u>
- Darken and bloated belly
- Very thin tail
- Aggregation of internal organs
 <u>Severity:</u>
- Up to 80% cumulative mortality within 1 week

Possible entry of pathogen in FTS

Bacterial content in water greatly is influenced by inputs like:

- 1. Live feeds (rotifers/artemia)
- 2. Intake water

There are **3 key steps** in the our approach at MAC:

- 1. Creating the "ideal environment" thru' dynamic salinity
- 2. Sizing of RAS larviculture using Mass balance Analysis
- 3. Seeding & maturation of bacteria Microbial Control Strategy

	Mass Balance Analysis	1 st : Establishment of
Dynamic Salinity Optimum water parameters for the selected species Eliminate pathogens by creating unfavorable conditions (low salinity)	Mass balance analysis (waste productions and oxygen supply) Treatments design & process flow	(nitrification) 2 nd : System maturation with heterotrophic bacteria and maintaining the autotrophic
Step 1	Step 2	Step 3

Microbial control strategy

Step 1 - Dynamic Salinity: Interaction of Host-Pathogen-Environment

The Epidemiological Triad, Snieszko (1976)

Survival rates of BB-affected fry: 30ppt flow-through vs 10ppt RAS

Result:

Cumulative mortality for 30ppt-FTS group reached 90% but the group in 10ppt-RAS remained below 10%

Growth of seabass fry is not affected at low salinity

Effect of salinity on hatching rate & buoyancy of larvae

Salinity (ppt)	20	25	30
Hatching Rate	68%	71%	81%
Buoyancy of hatched larvae (at mid-water column)	0%	10%	90%

28-30ppt is required for Day 0-3

Solution: Dynamic Salinity (RAS) for control of BB

- Salinity adjustment to control Big Belly for seabass fry production
- If there is any clinical sign of BB, lower the salinity 5ppt to suppress disease manifestation

Step 2 (Mass balance analysis): Determine the desired water qualities

Use of Mass Balance Analysis to size up the RAS for larviculture

Ref: Timmons. M, et al., 2010, Recirculating Aquaculture 2nd Edition

Ref: Sommerville, C. et al., 2014, Small Scale aquaponic food production, integrated fish and plant farming ,FAO Technical paper No. 589

Methods in calculating the total ammonia-nitrogen (TAN):

Sommervilles. C, et al., 2014, Small-scale aquaponic food production, Intergrated fish and plant farming, FAO Technical Paper No. 589																										
100	kg	Feed	x	45	%	protein in feed	x	16	%	nitrogen in protein	x	61	%	wasted nitrogen					x	1.2	g	NH ₃ converted per nitrogen	=	5.27	kg	of TAN
																								5.27	%	of feed
Timmons. M, et al., 2010, Recirculating Aquaculture 2nd Edition																										
100	kg	Feed	x	45	%	protein in feed	x	16	%	nitrogen in protein	x	80	%	nitrogen is assimilate	x	80	%	excreted nitrogen		90	%	Nitrogen excreted as NH ₃	=	4.15	kg	of TAN
																								4.15	%	of feed

The maximum daily amount of ammonia is est. at **4-5%** of peak feed load

Example of a Mass Balance Analysis Table

TAN Mass Balance Calculations		Units
Feed protein content	52	%
Total Ammonia Nitrogen (TAN) production rate	0.103	Kg/day
% TAN from feed (Range 3-5%)	4.78	%
Desired TAN concentration in recir water (NH ₃ /NH ₄)	2.00	mg/L
Passive Nitrification	10.00	%
Tan available after passive nitrification	0.093	Kg/day
Passive denitrification	0.00	%
Maximum nitrate-Nitrogen concentration desired (NO ₃)	200	mg/L
Daily new water replacement to maintain nitrate conc.		
(NO ₃)	465.00	L/day
Tan available to biofilter after effluent removal	0.0921	Kg/day
Flow rate to remove TAN to desired concentration	93,000.96	L/day
Flow rate to maintain at desired ammonia (NH ₃ /NH ₄)		
conc.	3.88	m3/hr
Water turnover per hour	48.21	%

Ref: Wayne Hutchinson, et. al, 2004, Recirculating Aquaculture Systems: Minimum Standards for Design, Construction and Management.

Design of RASlarviculture at MAC

Water Quality: Ammonia & Nitrite levels

System Startup

Water Quality: Nitrate & Water change

Seeding biofilter **Fish Culture** 50% 180 mg/l 45% 160 ----Water Exchange (%) water renewal (%) 35% 30% 25% 20% 140 -NO3 120 100 80 60 Daily 15% 40 10% 20 5% 0% 0 11 13 15 17 19 21 23 25 -15 -13 -11 -9 -7 -5 3 5 9 -3 7

System Startup

Day of culture

Water Quality – Dissolved Oxygen

Step 3: Microbial Control Strategy

- **Nitrifying bacteria** convert the toxic inorganic nitrogen to less toxic form (nitrate)
- To ensure high nitrification efficiency, need to reduce/remove the carbon load via the mechanical filter, before water enters the biological filter
- Removal of carbon source will prevent the heterotrophic bacteria from dominating the biological filter

Effect of C/N ratio in RAS

Ref: Luigi Michaud, 2007, Microbial communities of recirculating aquaculture facilities

Competitive Exclusion by K-selective bacteria

RAS system:

Matured bacterial content in water less likely to be perturbed by bacterial from inputs such as rotifer, feed

Establishing autotrophic & heterotrophic bacteria

- Phase 1: Allow <u>autotrophic</u> bacteria (nitrifying bacteria) to be established at the startup of RAS (w/o any carbon source)
- **Phase 2**: Focus on <u>heterotrophic</u> bacteria to occupy the "water column/wall" in the culture tank

Technology transfer to industry

- Farms faced **disease challenges** in producing fish fry using outdoor tank flow-thru system
- With adoption of RAS, high biosecurity can be maintained and better control of diseases
- Achieved consistent production of 1-inch seabass fry, consecutive
 6 batches with survival rates between 30%-40%

Development of Compact RAS for Hatchery DIY Foam Fractionation (Vol: 30L) **Mechanical Filtration** 200 Micron-filter net Outlet flow from culture tanks 1-inch diameter Venturi Water supply to **Disinfection:** culture tanks UV sterilizer pH Buffer (coral chips - Calcium Water release valve carbonate) **Biological Filtration** MBBR/Sump tank (500L) **Recirculating Pump** Max flow: 4m³/hr Aeration grid for MBBR fluidizing effect

The compact water treatment system is only 12% of the total footprint (9m²) used, supporting a production of 120K seabass fry

Estimated cost of production of Seabass Fry in commercial-scale RAS

Summary

- RAS can **overcome the limitations** of FTS (water quality control & biosecurity/diseases).
- RAS-based hatchery production can be based anywhere and even in multi-level farm-factories, far from the natural water bodies
- RAS technology for fry production is well established and ready for industry adoption

Summary

Future development of Hatchery Technology

RAS-based fry production is **economically viable** and also **future-proof** (climate change/ limited land & resources)

Thank you